Challenge

Spare Time Teaching
March 23, 2014

You may not add parameters or change the output.

Introduction

As we are studying languages we need to understand compilers and interpreters.
The first phase of both is parsing, often followed by some sort of static analysis,
such as checking that all variables are bound. Then as a final phase comes code
generation.

We have very high expectations of our compilers such as; it should be fast,
it should give meaningful errors, and it should be correct.

Problem

This time we ask you to write a compiler for a small (artificial) language called
BLock. The language looks as follows:

[decl x
; [use x
; use w
; decl vy]
; decl x
; use y |

That is, it consists of blocks, use and decl-statements. The semantic rules are:
You may use variables that are declared in any block, you may not declare
variables with the same name more once in a block. Therefore the example
program contains two errors this means that the output of your compiler should
be:

[decl x
; [use x
; use w —— undefined variable w
; decl vy]
; decl x —— x is already defined
;7 use y |

If we remove those two lines we should get:

enter 1
init 0, 1
enter 1
load 0, 1
init 0, 2
leave
load 0, 2
leave

The syntax is, ’enter size’ opens a new heap-frame consisting of size cells,
"load cell, frame’ fetches areferenceto cellin frame, and’init cell, frame’
initializes the content of cell in frame. A load should refer to the latest defined
or the last in the program.

The challenge is to write a one-pass compiler, for BLOCK, thus it should do
both parsing, static analysis, and code generation in a single pass, giving output
as illustrated above. The challenge should be solved in one ocaml-yacc file (and
an ocaml-lex file).

Note: You do not need to write to a file.

