
Challenge

Spare Time Teaching

March 23, 2014

You may not add parameters or change the output.

Introduction

As we are studying languages we need to understand compilers and interpreters.
The �rst phase of both is parsing, often followed by some sort of static analysis,
such as checking that all variables are bound. Then as a �nal phase comes code
generation.

We have very high expectations of our compilers such as; it should be fast,
it should give meaningful errors, and it should be correct.

Problem

This time we ask you to write a compiler for a small (arti�cial) language called
Block. The language looks as follows:

[decl x
; [use x

; use w
; decl y]

; decl x
; use y]

That is, it consists of blocks, use and decl-statements. The semantic rules are:
You may use variables that are declared in any block, you may not declare
variables with the same name more once in a block. Therefore the example
program contains two errors this means that the output of your compiler should
be:

[decl x
; [use x

; use w -- undefined variable w
; decl y]

; decl x -- x is already defined
; use y]

If we remove those two lines we should get:

1

enter 1
init 0, 1
enter 1
load 0, 1
init 0, 2
leave
load 0, 2
leave

The syntax is, 'enter size' opens a new heap-frame consisting of size cells,
'load cell, frame' fetches a reference to cell in frame, and 'init cell, frame'
initializes the content of cell in frame. A load should refer to the latest de�ned
or the last in the program.

The challenge is to write a one-pass compiler, for Block, thus it should do
both parsing, static analysis, and code generation in a single pass, giving output
as illustrated above. The challenge should be solved in one ocaml-yacc �le (and
an ocaml-lex �le).

Note: You do not need to write to a �le.

2

